If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+20x-6300=0
a = 2; b = 20; c = -6300;
Δ = b2-4ac
Δ = 202-4·2·(-6300)
Δ = 50800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{50800}=\sqrt{400*127}=\sqrt{400}*\sqrt{127}=20\sqrt{127}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{127}}{2*2}=\frac{-20-20\sqrt{127}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{127}}{2*2}=\frac{-20+20\sqrt{127}}{4} $
| .8a=16 | | -4=7z-18 | | 5(4x−2)=−10(−2x+1) | | 5x-6-6x=9 | | (y/13)=(3/11) | | 1x+3=3x+3 | | -5z/7=15 | | 3q-6q=3 | | 2(x+4)+(2x+9)=90 | | 5x+15=6x+4 | | 3n-(n+4)=22 | | 3(2z+-1)+5=5(z+1) | | -5x+16=5x-14 | | 12+1.5x=18+0.75x | | c-4/5=5/2 | | 14/22=x/99 | | 8.5-9.6=3.1b+1.2 | | -7x+5x-6x=0 | | m/1=7.3 | | 5(h+3)-9=4(h+2)-2 | | 2n+3=3n+7 | | a-1/6=7/6 | | 13x+1=12x+9 | | 7v=16.8 | | 785=p-254 | | 22+2=4(x+3) | | 5x-3(x-5)=-6+4x+9 | | 9^x+4=1/729 | | (1/m-3)-(6/m+1)=(4/m^2-2m-3) | | 7x+17=4x-10 | | 91-2x=180 | | a-7/6=7/3 |